
Mathematical induction 

 

 

Mathematical induction is a method of mathematical proof typically used to establish that a given statement is 

 

 true for all natural numbers. 

 

The simplest and most common form of mathematical induction proves that a statement involving a natural  

 

number n holds for all values of n. 

 

 

The principle of mathematical induction  is as follows: 

 

 For  the statement )(nT , Nn∈  is: 

 

1)     )1(T    is  true  [ or in some cases    )0(T  is true ] 

 

2)  )1()( +⇒ nTnT  is true  for  ,...2,1=∀n  then, the statement  )(nT is true for  Nn∈∀  

 

 

 

 

Practically, we will do: 

 

1) Check whether the formula is  correct  for  n = 1 

 

2) Suppose that the formula is correct  for  n = k   [induction  hypothesis] 

 

3) Argues that the formula is correct for n = k + 1 

 

 

 

                                               EXAMPLES: 

 

 

1) Prove that the statement: 
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Proof: 

 

 

 i) Check whether the formula is  correct  for  n = 1  (instead n , we put 1) 

                                             11
2

)11(1
1 =⇒

+
=      correct 

 

 

ii) Induction  hypothesis: suppose that the formula is correct  for  n = k   (instead n, we put k) 
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iii) Argues that the formula is correct for n = k + 1 

 

 

First, see what you need to prove, in the initial formula  replace n with  k +1, but always on the left side write  

 

before- last   member. 
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before- last   member                                                   So, this should prove! 

 

 

Always begin by hypothesis that we have presumed that is always correct! 
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Stop a little, and compare the left side of the hypothesis and what should prove 
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We see that in  the hypothesis is missing member (k+1). It is a trick, that on both sides of the hypothesis add  

 

expression (k +1). 
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When you calculate,  the right  side must be 
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)2)(1( ++ kk
 

 

 

So:       
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This is a complete proof. 

 

 

 



2) Prove that the statement:  
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n      holds for all natural numbers n. 

 

Proof: 

 

i) Check whether the formula is  correct  for  n = 1   
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ii) Induction  hypothesis: suppose that the formula is correct  for  n = k    
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iii)     Argues that the formula is correct for n = k + 1 

 

Always  first we see what we have to prove: 
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Head from  hypothesis, and on both sides add 2)1( +k  
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                                         left side is same              This must give :  
6

)32)(2)(1( +++ kkk
 

 

 

                  So:         
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Term 672 2 ++ kk ,we'll separate on  facts with    0))((.............................0 21
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Let's go back to the task: 
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And this we should prove! 

 

 

 

3)   Prove that the statement:  
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Proof: 

 

i) 
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ii)  Induction  hypothesis: 
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iii) Argues that the formula is correct for n = k + 1 

 

 

 

Prvo da vidimo šta treba da First to see what should be prove! 
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Proof will as usual start from the hypothesis: 
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on both sides will add    
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Let's go back to the task: 
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4) Prove that 
nn 25 1 +−
 is divisible by 3 for all natural numbers n. 

 

 

 

Proof: 

 

i)    for n = 1               321252525 1111 =+=+=+=+ −− onn    correct,  because 3:3 = 1 

 

 

ii) Induction  hypothesis : kk 25 1 +−  can be divided by 3 

 

 

iii) To prove that nn 25 1 +−
 can be divided with 3 for n = k + 1 
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     We use formula: nmnm
aaa ⋅=+  

 

 

Write as''trick'' : 111 525355 −−− ⋅+⋅=⋅ kkk  
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                )25(253225253 1111 kkkkkk ++⋅=⋅+⋅+⋅= −−−−           

 

 

     It is certainly divisible with 3 .  Why?                        

 

         )25(253 11 kkk ++⋅ −−  

 

 

obviously, because of  3                   is divisible by 3 because of our assumption that  kk 25 1 +−  is divisible by 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5)      Prove that     nnn 336 22 ++ +
    is divisible by 11  for all natural numbers n. 

 

 

Proof: 

 

i)  for  n=1 is            13222 336336 ++=++ + nnn  
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ii)  Induction  hypothesis nnn 336 22 ++ +  can be divided by 11 

 

 

iii) Proof    for    n=k+1 
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           Now, we  need some ideas!      
 

 

As with    
k26  we have 36,  triples with  
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Term     )336(36 22 kkk ++ +    is divisible by 11 because if  assumptions and   expression  )33(33 2 kk ++  because 

of number 33 = 3 *11 

 

 This is a complete proof.          

 

 

 

 

 

 

 

 

 



6) Prove that  for  any natural number    1>n     is    
24

13

2

1
...

2

1

1

1
>++

+
+

+ nnn
           

 

Solution: 

 

     

i) For n=2  is   
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                         ii)          Induction  hypothesis:    for n=k        
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                        iii)           For n= k+ 1, we need to prove:    
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We  must use a new “trick”! 

 

 

Mark with: 
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Determine the difference 
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This is certainly positive, because 0>k   012 >+k  and  01>+k  
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           This is a complete proof ! 

 

 

 

 

7)   Prove that:    22 n
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Proof: 

 

Proof begin with 5=n , because 5≥n  
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ii)  Induction  hypothesis:    for n=k     is   22 k
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Here we need new ideas! 

 

Watch the term : 
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multiply them!  (left with left and right with right) 
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