Mathematical induction

Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true for all natural numbers.

The simplest and most common form of mathematical induction proves that a statement involving a natural number n holds for all values of n.

The principle of mathematical induction is as follows:
For the statement $T(n), n \in N$ is:

1) $\quad T(1)$ is true [or in some cases $T(0)$ is true]
2) $T(n) \Rightarrow T(n+1)$ is true for $\forall n=1,2, \ldots$ then, the statement $T(n)$ is true for $\forall n \in N$

Practically, we will do:

1) Check whether the formula is correct for $n=1$
2) Suppose that the formula is correct for $\mathrm{n}=\mathrm{k}$ [induction hypothesis]
3) Argues that the formula is correct for $\mathrm{n}=\mathrm{k}+1$

EXAMPLES:

1) Prove that the statement: $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ holds for all natural numbers n.

Proof:
i) Check whether the formula is correct for $n=1$ (instead n, we put 1)

$$
1=\frac{1(1+1)}{2} \Rightarrow 1=1 \quad \text { correct }
$$

ii) Induction hypothesis: suppose that the formula is correct for $\mathrm{n}=\mathrm{k}$ (instead n , we put k)

$$
1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

iii) Argues that the formula is correct for $\mathrm{n}=\mathrm{k}+1$

First, see what you need to prove, in the initial formula replace n with $k+1$, but always on the left side write before- last member.
$1+2+\ldots+\underset{\uparrow}{k}+(k+1)=\frac{(k+1)(k+1+1)}{2} \quad$ or $\quad 1+2+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
before- last member
So, this should prove!

Always begin by hypothesis that we have presumed that is always correct!

$$
1+2+3 \ldots+k=\frac{k(k+1)}{2}
$$

Stop a little, and compare the left side of the hypothesis and what should prove

$$
\begin{gathered}
1+2+3 \ldots+k=\frac{k(k+1)}{2} \\
1+2+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}
\end{gathered}
$$

We see that in the hypothesis is missing member $(\mathrm{k}+1)$. It is a trick, that on both sides of the hypothesis add expression $(\mathrm{k}+1)$.

$$
\begin{aligned}
1+2+3 \ldots+k & =\frac{k(k+1)}{2} \\
1+2+3 \ldots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1)
\end{aligned}
$$

When you calculate, the right side must be $\frac{(k+1)(k+2)}{2}$

So: $\quad \frac{k(k+1)}{2}+\frac{k+1}{1}=\frac{(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$
This is a complete proof.
2) Prove that the statement: $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ holds for all natural numbers \boldsymbol{n}.

Proof:

i) Check whether the formula is correct for $\mathrm{n}=1$

$$
1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6} \Rightarrow 1=1 \quad \text { correct }
$$

ii) Induction hypothesis: suppose that the formula is correct for $\mathrm{n}=\mathrm{k}$

$$
1^{2}+2^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

iii) Argues that the formula is correct for $\mathrm{n}=\mathrm{k}+1$

Always first we see what we have to prove:

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{(k+1)(k+1+1)(2(k+1)+1)}{6} \\
\text { or } \quad 1^{2}+2^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

Head from hypothesis, and on both sides add $(k+1)^{2}$

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+k^{2} & =\frac{k(k+1)(2 k+1)}{6} \\
\underbrace{1^{2}+2^{2}+\ldots+k^{2}+(k+1)^{2}} & =\underbrace{\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}}
\end{aligned}
$$

left side is same

$$
\text { This must give : } \frac{(k+1)(k+2)(2 k+3)}{6}
$$

So: $\quad \frac{k(k+1)(2 k+1)}{6}+\frac{(k+1)^{2}}{1}=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}$

$$
=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}
$$

$$
=\frac{(k+1)\left[2 k^{2}+k+6 k+6\right]}{6}
$$

$$
=\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6}
$$

Term $2 k^{2}+7 k+6$,we'll separate on facts with $a k^{2}+b k+c=0$. \qquad $. a\left(k-k_{1}\right)\left(k-k_{2}\right)=0$
$2 k^{2}+7 k+6=0$
$k_{1,2}=\frac{-7 \pm 1}{4}$
$k_{1}=-\frac{3}{2}$
So: $\quad 2 k^{2}+7 k+6=2\left(k+\frac{3}{2}\right)(k+2)=(2 k+3)(k+2)$
$k_{2}=-2$
Let's go back to the task:

$$
\begin{aligned}
\frac{k(k+1)(2 k+1)}{6}+\frac{(k+1)^{2}}{1} & =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} \\
& =\frac{(k+1)\left[2 k^{2}+k+6 k+6\right]}{6} \\
& =\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6} \\
& =\frac{(k+1)(2 k+3)(k+2)}{6}
\end{aligned}
$$

And this we should prove!
3) Prove that the statement: $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} \quad$ holds for all natural numbers \boldsymbol{n}.

Proof:

i) $\frac{1}{(2 \cdot 1-1)(2 \cdot 1+1)}=\frac{1}{2 \cdot 1+1} \Rightarrow \frac{1}{3}=\frac{1}{3} \quad$ correct
ii) Induction hypothesis: $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}$
iii) Argues that the formula is correct for $\mathrm{n}=\mathrm{k}+1$

Prvo da vidimo šta treba da First to see what should be prove!
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}$

Proof will as usual start from the hypothesis:
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}$
on both sides will add $\frac{1}{(2 k+1)(2 k+3)}$
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}$

$$
\begin{array}{ll}
2 k^{2}+3 k+1=0 & 2 k^{2}+3 k+1=a\left(k-k_{1}\right)\left(k-k_{2}\right) \\
k_{1,2}=\frac{-3 \pm 1}{4} & =2\left(k+\frac{1}{2}\right)(k+1) \\
k_{1}=-\frac{1}{2} & =(2 k+1)(k+1) \\
k_{2}=-1 &
\end{array}
$$

Let's go back to the task:
$\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}=\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)}=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)}=\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}$
4) Prove that $5^{n-1}+2^{n}$ is divisible by $\mathbf{3}$ for all natural numbers \boldsymbol{n}.

Proof:

i) for $\mathrm{n}=1$

$$
5^{n-1}+2^{n}=5^{1-1}+2^{1}=5^{o}+2=1+2=3 \text { correct, because } 3: 3=1
$$

ii) Induction hypothesis: $5^{k-1}+2^{k}$ can be divided by 3
iii) To prove that $5^{n-1}+2^{n}$ can be divided with 3 for $\mathrm{n}=\mathrm{k}+1$

$$
\begin{aligned}
& 5^{n-1}+2^{n}=5^{k-1}+2^{k+1} \\
& =5^{k-1+1}+2^{k} \cdot 2^{1} \\
& =5^{k-1} 5^{1} \cdot+2^{k} \cdot 2 \\
& =5 \cdot 5^{k-1}+2 \cdot 2^{k}
\end{aligned}
$$

Write as"trick" : $5 \cdot 5^{k-1}=3 \cdot 5^{k-1}+2 \cdot 5^{k-1}$

$$
\begin{aligned}
& =5 \cdot 5^{k-1}+2 \cdot 2^{k} \\
& =3 \cdot 5^{k-1}+2 \cdot 5^{k-1}+2 \cdot 2^{k}=3 \cdot 5^{k-1}+2\left(5^{k-1}+2^{k}\right)
\end{aligned}
$$

It is certainly divisible with 3 . Why?

obviously, because of 3
is divisible by 3 because of our assumption that $5^{k-1}+2^{k}$ is divisible by 3
5) Prove that $6^{2 n}+3^{n+2}+3^{n}$ is divisible by 11 for all natural numbers \boldsymbol{n}.

Proof:
i) for $n=1$ is

$$
\begin{aligned}
6^{2 n}+3^{n+2}+3^{n} & =6^{2}+3^{3}+3^{1} \\
& =36+27+3 \\
& =66=6 \cdot 11
\end{aligned}
$$

correct
ii) Induction hypothesis $6^{2 n}+3^{n+2}+3^{n}$ can be divided by 11
iii) Proof for $n=k+1$

$$
\begin{aligned}
& 6^{2(k+1)}+3^{k+1+2}+3^{k+1}= \\
& 6^{2 k+1}+3^{k+2+1}+3^{k+1}= \\
& 6^{2 k} \cdot 6^{2}+3^{k+2} \cdot 3^{1}+3^{k} \cdot 3^{1}= \\
& 36 \cdot 6^{2 k}+3 \cdot 3^{k+2}+3 \cdot 3^{k}=
\end{aligned}
$$

Now, we need some ideas!

As with $6^{2 k}$ we have 36, triples with 3^{k+2} and 3^{k} we will write as $3=36-\mathbf{3 3}$
$36 \cdot 6^{2 k}+\sqrt{36-33} \cdot 3^{k+2}+\sqrt{36-33} \cdot 3^{k}$ is idea!

So:

$$
\begin{aligned}
& 36 \cdot 6^{2 k}+36 \cdot 3^{k+2}-33 \cdot 3^{k+2}+36 \cdot 3^{k}-33 \cdot 3^{k}= \\
& =36\left(6^{2 k}+3^{k+2}+3^{k}\right)-33\left(3^{k+2}+3^{k}\right)
\end{aligned}
$$

Term $36\left(6^{2 k}+3^{k+2}+3^{k}\right)$ is divisible by 11 because if assumptions and expression $33\left(3^{k+2}+3^{k}\right)$ because of number $33=3 * 11$

This is a complete proof.
6) Prove that for any natural number $n>1$ is $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$

Solution:
i) For $\mathrm{n}=2$ is $\frac{1}{3}+\frac{1}{4}=\frac{7}{12}=\frac{14}{24}$

$$
\frac{14}{24}>\frac{13}{24} \text { correct }
$$

ii) Induction hypothesis: for $\mathrm{n}=\mathrm{k} \quad \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24}$
iii) For $\mathrm{n}=\mathrm{k}+1$, we need to prove: $\frac{1}{k+2}+\frac{1}{k+3}+\ldots+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}$

We must use a new "trick"!

Mark with:

$$
S_{k}=\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k} \quad\left(S_{k}>\frac{13}{24}, \text { By assumption }\right)
$$

and

$$
S_{k+1}=\frac{1}{k+2}+\frac{1}{k+3}+\ldots+\frac{1}{2 k}+\frac{1}{2 k+1}+\frac{1}{2(k+1)}
$$

Determine the difference $S_{k+1}-S_{k}=$?

$$
\begin{aligned}
S_{k+1}-S_{k}=\left(\frac{1}{k+2}\right. & \left.+\frac{1}{k+3}+\ldots+\frac{1}{2 k+1}+\frac{1}{2(k+1)}\right)-\left(\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}\right) \\
& =\frac{1}{k+2}+\frac{1}{k+3}+\ldots+\frac{1}{2 k}+\frac{1}{2 k+1}+\frac{1}{2(k+1)}-\frac{1}{k+1}-\frac{1}{k+2}-\ldots-\frac{1}{2 k} \\
& =\frac{1}{2 k+1}+\frac{1}{2(k+1)}-\frac{1}{k+1} \\
& =\frac{1 \cdot 2(k+1)+1 \cdot(2 k+1)-2(k+1)}{(2 k+1) \cdot 2 \cdot(k+1)} \\
& =\frac{2 k+2+2 k+1-4 k-2}{2(2 k+1)(k+1)} \\
& =\frac{1}{2(2 k+1)(k+1)}>0
\end{aligned}
$$

This is certainly positive, because $k>0 \quad 2 k+1>0$ and $k+1>0$
So: $\quad S_{k+1}-S_{k}>0$

$$
S_{k+1}>\underbrace{S_{k}>\frac{13}{24}}
$$

induction hypothesis
Then is: $\quad S_{k+1}>\frac{13}{24}$

This is a complete proof !

7) Prove that: $2^{n}>n^{2}$ for everyone $n \geq 5$

Proof:

Proof begin with $n=5$, because $n \geq 5$
i)

$$
\begin{aligned}
n=5 \Rightarrow & 2^{5}>5^{2} \\
& 36>25 \text { correct }
\end{aligned}
$$

ii) Induction hypothesis: for $\mathrm{n}=\mathrm{k}$ is $2^{k}>k^{2}$
iii) For $\mathrm{n}=\mathrm{k}+1$, we need to prove: $2^{k+1}>(k+1)^{2}$

Here we need new ideas!

Watch the term : $\left(1+\frac{1}{n}\right)^{2}$
$\left(1+\frac{1}{n}\right)^{2}=1^{2}+2 \cdot 1 \cdot \frac{1}{n}+\left(\frac{1}{n}\right)^{2}=1+\frac{2}{n}+\frac{1}{n^{2}}$
since $n \geq 5 \Rightarrow \frac{1}{n} \leq \frac{1}{5} \quad$ and $\quad \frac{1}{n^{2}} \leq \frac{1}{25}$
then $\left(1+\frac{1}{n}\right)^{2}=1+\frac{2}{n}+\frac{1}{n^{2}} \leq 1+\frac{2}{5}+\frac{1}{25}$
$1+\frac{2}{5}+\frac{1}{25}=1+\frac{11}{25}<2$
$\left(1+\frac{1}{n}\right)^{2}=\left(\frac{n+1}{n}\right)^{2}<2$
$\frac{(n+1)^{2}}{n^{2}}<2$
and then is $\frac{(k+1)^{2}}{k^{2}}<2$, and hypothesis is $2^{k}>k^{2}$
$\left.\begin{array}{l}2^{k}>k^{2} \\ 2>\frac{(k+1)^{2}}{k^{2}}\end{array}\right\}$ multiply them! (left with left and right with right)
$2^{k} \cdot 2>\frac{(k+1)^{2}}{k^{2}} \cdot k^{2}$
$2^{k+1}>(k+1)^{2} \rightarrow$ and this is what we want to prove!

